If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x=40
We move all terms to the left:
x^2-8x-(40)=0
a = 1; b = -8; c = -40;
Δ = b2-4ac
Δ = -82-4·1·(-40)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{14}}{2*1}=\frac{8-4\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{14}}{2*1}=\frac{8+4\sqrt{14}}{2} $
| 1/8x+4=12-4x | | 10^2x-2*10^-2x=1 | | 14x+18x-6+1=-2x+1-6 | | 4x+2=-32 | | 3((2x-1)=x+2 | | x/7=3x+2 | | 10x+15x-8+5=-6x+5-8 | | -4x+6=6x+26 | | 9d=19d+10 | | z-0.2z+48=1.6(z-0.5) | | 3x-12=-72 | | 8+6x=25-3x | | 8+6x=25-3 | | (6x-19)=(11x-22) | | 19/40=x/3.5 | | 2(6x+5)=10x+2 | | 13u-4u=18 | | x(x+16)=-64 | | Y=x=5 | | 75=9-7c | | 9t-3=33 | | 70=10-1/4x | | 3z/7+5=1 | | 8n-3=5n+7 | | x=3(2x+1)-3(5x-4) | | 21y=5=8 | | x+4x+(x-44)=448 | | 5x-7=-3-23 | | -2m^2+13m-15=0 | | 12^2-13x-7175=0 | | -4x=1/2(-8x+3) | | 5x+15x-5=4(5x+1) |